Муниципальное бюджетное общеобразовательное учреждение «Свияжская основная общеобразовательная школа Зеленодольского муниципального района Республики Татарстан»

Рассмотрено на заседании ШМО Протокол №1 от 28 августа 2023 г Руководитель ШМО

___Г.Г.Кириллова

«Утверждаю»

Директор МБОУ «Свияжская

OOILI 3MP PT»

Т.Н. Строкина

Приказ № от

«25» почето 2023 г.

ПРОГРАММА ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ «Робототехника»

Принято на заседании педагогического совета протокол №1 от 28 августа 2023 г.

Пояснительная записка

Концепция модернизации российского образования определяет цели общего образования как ориентацию образования не только на усвоение обучающимися определенной суммы знаний, но и на развитие его личности, его познавательных И созидательных способностей. Необходимость образования в школьном полного цикла обусловлена новыми требованиями к образованности человека, в полной мере заявившими о себе на рубеже веков. Современный образовательный процесс должен быть направлен не только на передачу определенных знаний, умений и навыков, но и на разноплановое развитие ребенка, раскрытие его творческих возможностей, способностей, таких качеств личности как инициативность, самодеятельность, фантазия, самобытность, то есть всего того, что относится к индивидуальности человека. Практика что указанные требования к образованности человека не быть удовлетворены школьным образованием: ΜΟΓΥΤ только базовое формализованное образование все больше нуждается дополнительном неформальном, которое было и остается одним определяющих факторов развития склонностей, способностей и интересов человека, его социального и профессионального самоопределения.

Актуальность программы определяется востребованностью развития данного направления деятельности современным обществом.

Программа «Робототехника» удовлетворяет творческие, познавательные потребности заказчиков: детей и их родителей. Досуговые потребности, обусловленные стремлением к содержательной организации свободного времени реализуются в практической деятельности учащихся.

Программа «Робототехника» включает в себя изучение ряда направлений в области конструирования и моделирования, программирования и решения различных технических задач.

Дополнительная образовательная программа «Робототехника» имеет научно-техническую направленность с элементами научных элементов. Программа рассчитана на 1 год обучения и дает объем технических и естественно - научных компетенций, которыми вполне может овладеть современный школьник, ориентированный на научно-техническое и/или технологическое направление дальнейшего профессиональной деятельности. образования сферу ориентирована в первую очередь на ребят, желающих основательно изучить сферу применения роботизированных технологий и получить конструировании практические программировании навыки В И робототехнических устройств.

Интенсивное проникновение робототехнических устройств практически во все сферы деятельности человека – новый этап в развитии

общества. Очевидно, что он требует своевременного образования, обеспечивающего базу для естественного и осмысленного использования соответствующих устройств и технологий, профессиональной ориентации и обеспечения непрерывного образовательного процесса. Фактически программа призвана решить две взаимосвязанные задачи: профессиональная ориентация ребят в технически сложной сфере робототехники и формирование адекватного способа мышления.

данной программы определяется отношению к платформам реализуемых робототехнических устройств. Практически все программы дополнительного и профессионального образования ориентированы на одну платформу. Это обусловлено в равной финансовыми, временными, кадровыми и программными ограничениями (в каждом случае в своем соотношении). Например, широко рекламируемые в последнее время программы, построенные на базе Lego-роботов, обеспечивают базовое образование начинающих заниматься робототехникой, но предельно ограничены реализации возможностями конструктора, предназначенного для детей младшего школьного возраста. Программы дошкольного И профессионального образования – очень широки в обзорной части, но в практической части подобны игольному ушку и крайне далеки от свободы творчества.

Данная программа позволяет построить интегрированный курс, сопряженный со смежными направлениями, напрямую выводящий на свободное манипулирование конструкционными и электронными компонентами. Встраиваясь в единую линию, заданную целью проектирования, компоненты приобретают технологический характер, фактически становятся конструктором, позволяющим иметь больше степеней свободы творчества

Цель программы:

- Развитие творческих и научно-технических компетенций обучающихся и самостоятельной деятельности воспитанников по созданию робототехнических устройств, решающих поставленные задачи.

Задачи программы:

- Развивать научно-технические способности (критический, конструктивистский и алгоритмический стили мышления, фантазию, зрительно-образную память, рациональное восприятие действительности);
 - Расширять знания о науке и технике как способе рациональнопрактического освоения окружающего мира;
- Обучить решению практических задач, используя набор технических и интеллектуальных умений на уровне свободного использования;
- Формировать устойчивый интерес робототехнике, способность воспринимать их исторические и общекультурные особенности;

- Воспитывать уважительное отношение к труду.

Категория обучающихся: учащиеся школы 11-17 лет

Срок реализации программы – 1 год

Кол-во часов: 1 год обучения -68 часов (2 часа в неделю)

Форма подведения итогов: - Итоговые проекты воспитанников выносятся на робототехнические соревнования, конкурсы, выставки технического творчества и конференции НОУ всех возможных уровней.

Ожидаемые результаты и способы их проверки:

после освоения данной программы воспитанник получит знания о:

- науке и технике как способе рационально-практического освоения окружающего мира;
- роботах, как об автономных модулях, предназначенных для решения сложных практических задач;
 - истории и перспективах развития робототехники;
- робоспорте, как одном из направлений технических видов спорта;
- физических, математических и логических теориях, положенных в основу проектирования и управления роботами;
- философских и культурных особенностях робототехники, как части общечеловеческой культуры;

овладеет:

- критическим, конструктивистским и алгоритмическим стилями мышления;
- техническими компетенциями в сфере робототехники, достаточными для получения высшего образования по данному направлению;
- набором коммуникативных компетенций, позволяющих безболезненно войти и функционировать без напряжения в команде, собранной для решения некоторой технической проблемы;
- разовьет фантазию, зрительно-образную память, рациональное восприятие действительности;
- научится решать практические задачи, используя набор технических и интеллектуальных умений на уровне их свободного использования;
- приобретет уважительное отношение к труду как к обязательному этапу реализации любой интеллектуальной идеи.

уровень освоенности программы контролируется в соревновательных формах: микросоревнование, соревнование, участие в конференции НОУ «Эврика», участие в выставке технического творчества, участие в тематических конкурсах.

Учебно-тематический план

Курс основан на использовании простых комплектов, идентичных Lego Mindstorms NXT 2.0 и визуальной среды программирования для обучения робототехнике LEGO MINDSTORMS Education NXT. Если используется комплект другого производителя, Lego-компоненты программно-аппаратного конструктора заменяются в соответствии с их функциональной идентичностью, но общая структура плана не изменяется. Таким образом допускается использование программы на любой доступной функционально-полной платформе. Это особенно важно для планирования, поскольку даже среди Lego-комплектов наблюдается значительная разница как в исполнении, так и в комплектации.

Основная ориентация программы 1 года обучения на усвоение центральных понятий робототехники с их непосредственной реализацией и проверкой. Акцент на робототехнические соревнования самых разных уровней, анализ моделей-лидеров, спецификации соревновательных полей и преамбул. Наряду с этим самостоятельную роль играет профориентационное собеседование в группах и персонально.

Изменение регламента и спецификаций робототехнических соревнований городского (и выше) уровня может привести к изменению порядка следования тем в целях обеспечения адекватной подготовки учащихся к заданным срокам.

No	Наименование темы	Ко	личество ч	насов
п/п		Всего	Теория	Практика
1	Вводное занятие	2	2	-
2	Первичные знания о роботах из конструктора	14	4	10
3	Использование датчиков при управлении роботом	12	6	6
4	Автономные роботы, выполняющие определенную функцию	10	5	5
5	Часы, выделенные на самостоятельную и соревновательную деятельность воспитанников	30	1	29
	ОТОТИ	68	18	50

Содержание программы обучения:

Тема занятия	Теоретическая часть	Практическая часть
Введение в	Понятие «робот»,	Ознакомление с комплектом
специальность.	«робототехника»,	деталей для изучения
Робоспорт.	«робоспорт». Применение	робототехники: контроллер,
Техника	роботов в различных сферах	сервоприводы,
безопасности	жизни человека, значение	соединительные кабели,
	робототехники. Просмотр	датчики-касания,
	видеофильма о	ультразвуковой, освещения.
	роботизированных	Порты подключения.
	системах.	Создание колесной базы на
	Показ действующей модели	гусеницах
	робота и его программ: на	
	основе датчика освещения,	
	ультразвукового датчика,	
	датчика касания	
Первая программа	Понятие «программа»,	Написание программы для
	«алгоритм». Алгоритм	движения по кругу через
	движения робота по кругу,	меню контроллера. Запуск и
	вперед-назад, «восьмеркой»	отладка программы.
	и пр.	Написание других простых
	-	программ на выбор
		учащихся и их
		самостоятельная отладка
Ознакомление с	Понятие «среда	Интерфейс программы
визуальной средой	программирования»,	LEGO MINDSTORMS
программирования	«логические блоки». Показ	Education NXT и работа с
	написания простейшей	ним. Написание программы
	программы для робота	для воспроизведения звуков
		и изображения по образцу
Робот в движении	Написание линейной	Создание и отладка
	программы.	программы для движения с
	Понятие «мощность	ускорением, вперед-назад.
	мотора», «калибровка».	«Робот-волчок». Плавный
	Зубчатая передача.	поворот, движение по
	Применение блока	кривой
	«движение» в программе.	
Понятие «цикл»	Первая программа с циклом	Использование блока
		«цикл» в программе.
	Написание программ с	Создание и отладка
	циклом	программы для движения
		робота по «восьмерке»
Робот-танцор	Понятие «генератор	Создание программы для

	T	
	случайных чисел».	движения робота по
	Использование блока	1 1
	«случайное число» для	Робот без NXT-блока
	управления движением	управления
	робота	
Робот рисует	Теория движения робота по	Написание программы для
	сложной траектории	движения по контуру
Робот,	Промышленные	Робот, записывающий
повторяющий	манипуляторы и их отладка.	траекторию движения и
воспроизведенные	Блок	потом точно её
действия	«записи/воспроизведения»	воспроизводящий
Робот,	Робот, останавливающийся	Робот, выдерживающий
определяющий	на определенном расстоянии	расстояние отпрепятствия
расстояние до	до препятствия. Робот-	
препятствия	охранник	
Ультразвуковой	1	
датчик		
Ультразвуковой	Роботы – пылесосы,	Создание и отладка
датчик управляет	роботы-уборщики. Цикл и	программы для движения
роботом	прерывания	робота внутри помещения и
росотом	прерывания	самостоятельно огибающего
		препятствия.
Робот-прилипала	Программа с вложенным	Робот, следящий за
т ооот прилипала	циклом. Подпрограмма	протянутой рукой и
	циклом. Подпрограмма	выдерживающий требуемое
		расстояние в динамике.
		Настройка иных действий в
		зависимости от показаний
Иононгророми	Помоду область	ультразвукового датчика
Использование	Яркость объекта,	
нижнего датчика	отраженный свет,	на черной линии. Робот,
освещенности	освещенность,	начинающий двигаться по
	распознавание цветов	комнате, когда включается
-	роботом	свет.
Движение вдоль	Калибровка датчика	Робот, движущийся вдоль
ЛИНИИ	освещенности	черной линии
Робот с	Датчик касания, типы	Создание робота и его
несколькими	касания	программы с задним
датчиками		датчиком касания и
		передним ультразвуковым
Ускоренное	Принципы	Робот, движущийся влопь
Ускоренное по	Принципы	Робот, движущийся вдоль
Ускоренное движение по криволинейной	Принципы дифференциального управления	Робот, движущийся вдоль черной линии

траектории			
Движение по		Принципы интегрального	Робот, движущийся вдоль
прерывистой		управления	черной линии
линии			
Манипулятор		Определение касания –	Робот для квадро-
робота		рычаг, определение цвета	кегельринга
		предмета	
Определение		Датчик наклона на сонаре,	Робот, выбирающий дорогу
наклонной		на датчике освещенности, на	по пандусам
поверхности		контактных датчиках	
Конструкции		Циркуляция гусеничной и	Эксперименты с
роботов для		колесной платформ.	платформами
поворота в		Платформа на шаре	
ограниченном			
пространстве			

Основная и дополнительная литература

- 1. Шахинпур M. Курс робототехники. M.: Мир, 1990. 527c.
- 2. Фу К., Гонсалес Р., Ли К. Робототехника: Пер с англ. М.: Мир, 1989.-624 с.
- 3. Козлов В.В., Макарычев В.П., Тимофеев А.В. ,Юревич Е.Ю. Динамика управления роботами. Под ред. Е. Ю. Юревича. М.: Наука, 1984. 336 с.
- 4. Тимофеев А. В. Управление роботами: Учебное пособие. Л.: Издательство Ленинградского университета, 1986. 240с.
- 5. Тимофеев А. В. Адаптивные робототехнические комплексы. Л.: Машиностроение, 1988. 332c.
- 6. Справочник по промышленной робототехнике: В 2-х кн. Книга 1. Под ред. Ш. Нофа. М.: Машиностроение, 1989. 480 с.
- 7. Справочник по промышленной робототехнике: В 2-х кн. Книга 2. Под ред. Ш. Нофа. М.: Машиностроение, 1990.-480c.
- 8. Тимофеев А.В. Роботы и искусственный интеллект. М.: Мир, $1978.-192~\mathrm{c}.$
- 9. Кулаков Ф.М. Супервизорное управление манипуляционными роботами. М.: Наука, 1980. 448 с.
- 10. Коренев Г.В. Целенаправленная механика управляемых манипуляторов. М.: Наука, 1979. 447 с.
- 11. Системы очувствления и адаптивные промышленные роботы. Под редакцией Ю. Г. Якушенкова. М.: Машиностроение, 1990. 290 с.
- 12. Медведев В.С. Лесков А.Г., Ющенко А.С. Системы управления манипуляционных роботов.- М.: Наука, 1978. 416 с.
- 13. Управляющие системы промышленных роботов. Под обш. ред. И.М. Макарова, В.А. Чиганова.- М.: Машиностроение, 1984. 288 с.